Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PeerJ ; 11: e15500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37361043

RESUMO

Understanding the mechanisms driving community assembly has been a major focus of ecological research for nearly a century, yet little is known about these mechanisms in commensal communities, particularly with respect to their historical/evolutionary components. Here, we use a large-scale dataset of 4,440 vascular plant species to explore the relationship between the evolutionary distinctiveness (ED) (as measured by the 'species evolutionary history' (SEH)) of host species and the phylogenetic diversity (PD) of their associated epiphyte species. Although there was considerable variation across hosts and their associated epiphyte species, they were largely unrelated to host SEH. Our results mostly support the idea that the determinants of epiphyte colonization success might involve host characteristics that are unrelated to host SEH (e.g., architectural differences between hosts). While determinants of PD of epiphyte assemblages are poorly known, they do not appear to be related to the evolutionary history of host species. Instead, they might be better explained by neutral processes of colonization and extinction. However, the high level of phylogenetic signal in epiphyte PD (independent of SEH) suggests it might still be influenced by yet unrecognized evolutionary determinants. This study highlights how little is still known about the phylogenetic determinants of epiphyte communities.


Assuntos
Evolução Biológica , Traqueófitas , Filogenia , Simbiose , Especificidade de Hospedeiro
2.
AoB Plants ; 15(1): plac056, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36654988

RESUMO

The scientific work of Alexander von Humboldt was influenced by his interaction with the diversity and natural wealth of the Neotropics. He proposed that climate determines plant diversity along elevational gradients based on his observations. Here, we evaluated the most prominent climate-based hypotheses in explaining plant diversity along an elevational gradient that Humboldt himself visited during his journey across Mexico. Specifically, we examined how climatic variables and forest-use intensity affected species richness and phylogenetic structure of major angiosperm life forms (trees, shrubs, epiphytes, herbs and lianas) along the Cofre de Perote mountain, Veracruz, Mexico. We analysed species richness and phylogenetic structure of angiosperms at eight sites between 30 to 3500 m a.s.l. We estimated the phylogenetic structure using a mega-phylogeny of angiosperms and the abundance-weighted net relatedness index. We considered multiple environmental factors' direct and indirect effects by applying a piecewise structural equation modelling approach. Each life form responds differently to the environmental variables included in our model; however, it is observed that temperature is the main predictor of the taxonomic and phylogenetic diversity of the angiosperms studied, both when the different life forms are grouped and separated. Potential evapotranspiration and precipitation are variables that also influence some life forms' diversity, especially taxonomic diversity. The forest-use intensity negatively affected only the taxonomic diversity of trees. These results highlight the influence of studying the different life forms of angiosperms in diversity gradient models and show the great influence that temperature has in conjunction with other environmental variables to promote the taxonomic and phylogenetic diversity of plant communities. Given the current global environmental crisis, an integrative biogeographically oriented vision based on Humboldt's method is necessary. Honouring the work of Humboldt and continuing his legacy demands more research to understand the causes behind elevational diversity gradients.

3.
Plants (Basel) ; 11(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432880

RESUMO

The Bromeliaceae family has been used as a model to study adaptive radiation due to its terrestrial, epilithic, and epiphytic habits with wide morpho-physiological variation. Functional groups described by Pittendrigh in 1948 have been an integral part of ecophysiological studies. In the current study, we revisited the functional groups of epiphytic bromeliads using a 204 species trait database sampled throughout the Americas. Our objective was to define epiphytic functional groups within bromeliads based on unsupervised classification, including species from the dry to the wet end of the Neotropics. We performed a hierarchical cluster analysis with 16 functional traits and a discriminant analysis, to test for the separation between these groups. Herbarium records were used to map species distributions and to analyze the climate and ecosystems inhabited. The clustering supported five groups, C3 tank and CAM tank bromeliads with deep tanks, while the atmospheric group (according to Pittendrigh) was divided into nebulophytes, bromeliads with shallow tanks, and bromeliads with pseudobulbs. The two former groups showed distinct traits related to resource (water) acquisition, such as fog (nebulophytes) and dew (shallow tanks). We discuss how the functional traits relate to the ecosystems inhabited and the relevance of acknowledging the new functional groups.

4.
Mol Ecol Resour ; 22(3): 927-945, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34606683

RESUMO

Target capture has emerged as an important tool for phylogenetics and population genetics in nonmodel taxa. Whereas developing taxon-specific capture probes requires sustained efforts, available universal kits may have a lower power to reconstruct relationships at shallow phylogenetic scales and within rapidly radiating clades. We present here a newly developed target capture set for Bromeliaceae, a large and ecologically diverse plant family with highly variable diversification rates. The set targets 1776 coding regions, including genes putatively involved in key innovations, with the aim to empower testing of a wide range of evolutionary hypotheses. We compare the relative power of this taxon-specific set, Bromeliad1776, to the universal Angiosperms353 kit. The taxon-specific set results in higher enrichment success across the entire family; however, the overall performance of both kits to reconstruct phylogenetic trees is relatively comparable, highlighting the vast potential of universal kits for resolving evolutionary relationships. For more detailed phylogenetic or population genetic analyses, for example the exploration of gene tree concordance, nucleotide diversity or population structure, the taxon-specific capture set presents clear benefits. We discuss the potential lessons that this comparative study provides for future phylogenetic and population genetic investigations, in particular for the study of evolutionary radiations.


La captura selectiva de secuencias de ADN ha surgido como una herramienta importante para la filogenética y la genética de poblaciones en taxones no-modelo. Mientras que el desarrollo de sondas de captura específicas para cada taxón requiere un esfuerzo sostenido, las colecciones de sondas universales disponibles pueden tener una potencia disminuida para la reconstrucción de relaciones filogenéticas poco profundas o de radiaciones rápidas. Presentamos aquí un conjunto de sondas para la captura selectiva desarrollado recientemente para Bromeliaceae, una familia de plantas extensa, ecológicamente diversa y con tasas de diversificación muy variables. El conjunto de sondas se centra en 1776 regiones de codificación, incluyendo genes supuestamente implicados en rasgos de innovación clave, con el objetivo de potenciar la comprobación de una amplia gama de hipótesis evolutivas. Comparamos la potencia relativa de este conjunto de sondas diseñado para un taxón específico, Bromeliad1776, con la colección universal Angiosperms353. El conjunto específico da lugar a un mayor éxito de captura en toda la familia. Sin embargo, el rendimiento global de ambos kits para reconstruir árboles filogenéticos es relativamente comparable, lo que pone de manifiesto el gran potencial de los kits universales para resolver las relaciones evolutivas. Para análisis filogenéticos o de genética de poblaciones más detallados, como por ejemplo la exploración de la congruencia de los árboles de genes, la diversidad de nucleótidos o la estructura de la población, el conjunto de captura específico para Bromeliaceae presenta claras ventajas. Discutimos las lecciones potenciales que este estudio comparativo proporciona para futuras investigaciones filogenéticas y de genética de poblaciones, en particular para el estudio de las radiaciones evolutivas.


Assuntos
Evolução Biológica , Genética Populacional , Filogenia
5.
Biodivers Data J ; 9: e71974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720637

RESUMO

BACKGROUND: This data paper describes a new, comprehensive database (BIOVERA-Epi) on species distributions and leaf functional traits of vascular epiphytes, a poorly studied plant group, along gradients of elevation and forest-use intensity in the central part of Veracruz State, Mexico. The distribution data include frequencies of 271 vascular epiphyte species belonging to 92 genera and 23 families across 120 20 m × 20 m forest plots at eight study sites along an elevational gradient from sea level to 3500 m a.s.l. In addition, BIOVERA-Epi provides information on 1595 measurements of nine morphological and chemical leaf traits from 474 individuals and 102 species. For morphological leaf traits, we provide data on each sampled leaf. For chemical leaf traits, we provide data at the species level per site and land-use type. We also provide complementary information for each of the sampled plots and host trees. BIOVERA-Epi contributes to an emerging body of synthetic epiphytes studies combining functional traits and community composition. NEW INFORMATION: BIOVERA-Epi includes data on species frequency and leaf traits from 120 forest plots distributed along an elevational gradient, including six different forest types and three levels of forest-use intensity. It will expand the breadth of studies on epiphyte diversity, conservation and functional plant ecology in the Neotropics and will contribute to future synthetic studies on the ecology and diversity of tropical epiphyte assemblages.

6.
Biodivers Data J ; 9: e69560, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602837

RESUMO

BACKGROUND: Here, we describe BIOVERA-Tree, a database on tree diversity, community composition, forest structure and functional traits collected in 120 forest plots, distributed along an extensive elevational gradient in Veracruz State, Mexico. BIOVERA-Tree includes information on forest structure from three levels of forest-use intensity, namely old-growth, degraded and secondary forest, replicated across eight elevations from sea-level to near the tree line at 3500 m and on size and location of 4549 tree individuals with a diameter at breast height ≥ 5 cm belonging to 216 species, 154 genera and 80 families. We also report measurements of eight functional traits, namely wood density for 143 species, maximum height for 216 species and leaf traits including: specific leaf area, lamina density, leaf thickness, chlorophyll content and leaf area for 148 species and leaf dry matter content for 145 species. NEW INFORMATION: BIOVERA-Tree is a new database comprising data collected in a rigorous sampling design along forest-use intensity and elevational gradients, contributing to our understanding of how interactive effects of forest-use intensity and elevation affect tree diversity, community composition and functional traits in tropical forests.

7.
AoB Plants ; 11(2): plz014, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31186827

RESUMO

Pollinators can be a limited resource and natural selection should favour differences in phenotypic characteristics to reduce competition among plants. Bats are important pollinators of many Neotropical plants, including the Bromeliaceae; however, the pre-pollination mechanisms for isolation among sympatric bat-pollinated bromeliads are unknown. Here, we studied the mechanisms for reproductive segregation between Pitcairnia recurvata, Pseudalcantarea viridiflora, Werauhia noctiflorens and W. nutans. The study was conducted at Los Tuxtlas Biosphere Reserve, in Veracruz, Mexico We carried out ex situ and in situ manual pollination treatments to determine the breeding system by assessing fruiting and seedling success and sampled bat visitors using mist-nets and infrared cameras. We determined the nocturnal nectar production pattern, estimating the energetic content of this reward. All four bromeliads are self-compatible, but only P. recurvata appears to require pollinators, because the physical separation between anthers and stigma prevents self-pollination, it is xenogamous and presents a strictly nocturnal anthesis. The bats Anoura geoffroyi, Glossophaga soricina and Hylonycteris underwoodi are probable pollinators of three of the studied bromeliads. We did not record any animal visiting the fourth species. The flowering season of each species is staggered throughout the year, with minimal overlap, and the floral morphology segregates the locations on the body of the bat where the pollen is deposited. The most abundant nectar per flower is provided by P. viridiflora, but P. recurvata offers the best reward per hectare, considering the density of flowering plants. Staggered flowering, different pollen deposition sites on the body of the pollinator and differences in the reward offered may have evolved to reduce the competitive costs of sharing pollinators while providing a constant supply of food to maintain a stable nectarivorous bat community.

8.
Rev. biol. trop ; 67(1): 118-131, Jan.-Mar. 2019. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1041899

RESUMO

Resumen El conocimiento sobre la riqueza y la distribución de las plantas epifítas vasculares es aún incompleto en muchas áreas de México. Un ejemplo es la región terrestre prioritaria (RTP) Cerros Negro-Yucaño, que se ubica en el noroeste del estado de Oaxaca y pertenece a la región mixteca alta (Ñuu Savi Sukun, Ñuu vixi). Con base en la revisión de material de herbario en 12 colecciones institucionales mexicanas y en la recolección de especímenes en algunas localidades, principalmente cubiertas por bosque de encino, en 17 de los 18 municipios que incluye la RTP, se compilo un listado de las angiospermas epífitas. Se registró la presencia de 40 especies, distribuidas en 13 géneros y cinco familias; 28 taxa son endémicos de México y tres de ellos se conocen solamente de Oaxaca. Los géneros Tillandsia (18 spp.) y Peperomia (4) fueron los mejor representados en el área. El bosque de encino fue el tipo de vegetación en el cual se encontraron más epífitas (32 spp.) y también el intervalo altitudinal de 1 900 a 2 100 m (19 spp.). Plantas en floración de Artorima erubescens, Laelia albida, L. furfuracea y Prosthechea karwinskii, son utilizadas por pobladores de la región como ornamentales, durante las celebraciones religiosas de Día de Muertos y Semana Santa. Este impacto humano podría representar una amenaza para las poblaciones silvestres de estas especies en el futuro.(AU)


Abstract The knowledge on richness and distribution of epiphytic vascular plants is still incomplete in many areas of Mexico. An example is the terrestrial priority region (RTP) Cerros Negro-Yucaño, which is located in the Northwest portion of Oaxaca and belongs to the Mixteca Alta Region (Ñuu Savi Sukun, Ñuu Vixi). Based on herbarium material revision of 12 Mexican institutional collections and the collection of specimens in some localities, mainly covered by oak forest, in 17 of the 18 municipalities included in the RTP, we compiled a list of epiphytic angiosperms. The presence of 40 species, distributed in 13 genera and five families was recorded; 28 taxa are endemic to Mexico and three of them are only known from Oaxaca. The genera Tillandsia (18 spp.) and Peperomia (4) were the best represented genera in the area. Oak forest was the type of vegetation in which the most of the epiphytes were found (32 spp.), and also the altitudinal range between 1 900 and 2 100 m (19 spp.). Flowering plants of Artorima erubescens, Laelia albida, L. furfuracea, and Prosthechea karwinskii are used by the local people as ornamentals during the religious celebrations of Day of the Dead (Mexico) and Holly Week. This human impact might be a threat to the wild populations of these species in the future.(AU)


Assuntos
Quercus , Orchidaceae , Bromeliaceae , Biodiversidade , México
9.
PLoS One ; 12(8): e0182893, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28792536

RESUMO

Terrestrial herbs are important elements of tropical forests; however, there is a lack of research on their diversity patterns and how they respond to different intensities of forest-use. The aim of this study was to analyze the diversity of herbaceous angiosperms along gradients of elevation (50 m to 3500 m) and forest-use intensity on the eastern slopes of the Cofre de Perote, Veracruz, Mexico. We recorded the occurrence of all herbaceous angiosperm species within 120 plots of 20 m x 20 m each. The plots were located at eight study locations separated by ~500 m in elevation and within three different habitats that differ in forest-use intensity: old-growth, degraded, and secondary forest. We analyzed species richness and floristic composition of herb communities among different elevations and habitats. Of the 264 plant species recorded, 31 are endemic to Mexico. Both α- and γ-diversity display a hump-shaped relation to elevation peaking at 2500 m and 3000 m, respectively. The relative contribution of between-habitat ß-diversity to γ-diversity also showed a unimodal hump whereas within-habitat ß-diversity declined with elevation. Forest-use intensity did not affect α-diversity, but ß-diversity was high between old-growth and secondary forests. Overall, γ-diversity peaked at 2500 m (72 species), driven mainly by high within- and among-habitat ß-diversity. We infer that this belt is highly sensitive to anthropogenic disturbance and forest-use intensification. At 3100 m, high γ-diversity (50 species) was driven by high α- and within-habitat ß-diversity. There, losing a specific forest area might be compensated if similar assemblages occur in nearby areas. The high ß-diversity and endemism suggest that mixes of different habitats are needed to sustain high γ-richness of terrestrial herbs along this elevational gradient.


Assuntos
Altitude , Biodiversidade , Florestas , Magnoliopsida , Ecossistema , Modelos Lineares , México , Chuva , Temperatura
10.
Ann Bot ; 113(6): 1047-55, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24651370

RESUMO

BACKGROUND AND AIMS: Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. METHODS: The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. KEY RESULTS: Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). CONCLUSIONS: This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.


Assuntos
Quirópteros/fisiologia , Polinização , Tillandsia/fisiologia , Animais , Flores , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...